Purpose: Construction of an accurate and easy-to-use power semiconductor model for virtual production and verification of power electronics equipment utilizing simulation technology

1. Building an I_D - V_{DS} model for power semiconductor devices

Modeling method (@MATLAB)

Target : 1.2kV-Full SiC module

Power semiconductor device

<u>Step.1</u> Import the actual measurement data (I_D vs. V_{DS}). Extract the values of the variables Func1, Func2, and Func3 in the basic model formula for each V_{GS} data.

* Fitting measured data with Func1,2,3.

Basic model $I_{D(V_{DS})} = f_{(Func1,Func2,Func3,V_{DS})}$ formula : = Func1 × tanh(Func2 × V_{DS}...) + ...

Target : 1.2kV-Full SiC module

<u>Step.2</u>

Model the extracted Func1, Func2, Func3 data with a Gaussian function as a function of V_{GS} .

<u>Step.3</u> Replace Func1 ~ 3 model with basic model formula.

* Power semiconductor model is completed

2. Matching the switching characteristics of the model with those of the semiconductor device

<u>①</u>Measuring switching waveforms <u>using a test circuit</u>

Configuration of the test circuit

(4) The objective function is minimized by simulated annealing.

2Add tuning parameters to the model

Add tuning parameters to I_D - V_{DS} models, C_{GS} models, C_{DG} models

3 Set objective function for tuning

Calculating the difference between the measured waveform and the analysis waveform for the following items under each current

RMSE I_G : Error between measurement and analysis I_G RMSE V_G : Error between measurement and analysis V_G I_G . RMSE dI_D/dt : Error between measurement and analysis dI_D/dt RMSE $dV_D dt$: Error between measurement and analysis $dV_D dt$

The objective function consists of a total of eight factors that take into account turn-on and turn-off.

$$f_{obj} = I_{G.ON.RMSE} + I_{G.OFF.RMSE} + V_{GS.ON.RMSE} + V_{GS.OFF.RMSE} + \frac{dI_{D.OF}}{dt_{RMSE}} + \frac{dI_{D.OFF}}{dt_{RMSE}} + \frac{dV_{DS.OFF}}{dt_{RMSE}} + \frac{dV_{DS}}{dt_{RMSE}} + \frac{dV_{DS}}{dt_{RMSE}} + \frac{dV_{DS}}{dt_{RMSE}} + \frac{dV_{DS}}{dt_{RMSE}}$$

5

Comparison of measurement and analysis (turn-on)

Comparison of measurement and analysis (turn-off)

7